Investigation of the EPR Parameters of an Orthorhombic Cu²⁺ Center in Cs₂ZnCl₄ Crystal

Hui-Ning Dong^{a,b}, Shao-Yi Wu^{b,c}, Xian-Rong Liu^a, and Wei-Dong Chen^d

^a Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^c Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

^d Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P. R. China

Reprint requests to Dr. H.-N. D.; E-mail:donghn@cqupt.edu.cn

Z. Naturforsch. **60a**, 373 – 375 (2005); received February 23, 2005

The electron paramagnetic resonance (EPR) anisotropic g-factors g_x , g_y and g_z and hyperfine structure constants A_x , A_y and A_z of Cu^{2+} in Cs_2ZnCl_4 crystal are theoretically investigated by the method of diagonalizing the full Hamiltonian matrix. The crystal-field parameters are obtained from the crystal structure by the superposition model. The results, agreeing reasonably with the observed values, are discussed.

Key words: Crystal-field Theory; Electron Paramagnetic Resonance; Cu²⁺; Cs₂ZnCl₄.